KAJIAN ARTIKEL: POTENSI PLASMA NON TERMAL SEBAGAI KANDIDAT TERAPI MASTITIS SUBKLINIS

Main Article Content

Elfahra Casanza Amalda Farah Alhamidah Yudit Oktanella Muhammad Khuzain

Abstract

Subclinical mastitis is the occurrence of inflammation in the parenchymal tissue of mammary
glands due to bacterial contamination that does not show clinical symptoms lead to impacted on
economic losses. The highest incidence of subclinical mastitis is the presence of Staphylococcus
aureus bacteria contamination. Subclinical mastitis in Indonesia is reported to reduce milk production
by up to 53.5%. Pathogenesis of Staphylococcus aureus occurs in the presence of biofilm formation as
bacterial immune system to protecting itself from disinfectants and antibiotics. In the last few decades,
the development of plasma technology has been widely used in the medical field as cancer therapy,
reducing pain, accelerating wound healing and tissue sterilization. There is no study that using the
concept of utilizing Non Termal Plasma in the field of veterinary science, especially in mastitis
therapy. Non Termal Plasma is able to decontaminate Staphylococcus aureus through inhibition and
destruction of biofilms. The mechanism of action of Non Termal Plasma in repairing mammary gland
tissue is through the destruction of DNA in the Reactive Oxygen Species (ROS) process by increasing
the growth factor TGF-1 which accelerates the process normal cell regeneration. The objective of
this study is to reviewing the efficacy of plasma non termal as subclinical mastitis theraphy. This study
was conducted through a narrative review approach by collecting international and national
literature with interval time of publication within 2010 – 2020.

Keywords:
Subclinical Mastitis, Non Thermal Plasma, Staphylococcus aureus
References
Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., … Ikehara, Y. 2016. Galectin expression in healing wounded skin treated with lowtemperature plasma: Comparison with treatment by electronical coagulation. Archives of Biochemistry and Biophysics, 605, 86–94.

Al-rawaf, A. F., Fuliful, F. K., Khalaf, M. K., & Oudah, H. K. 2018. Studying the nontermal plasma jet characteristics and application on bacterial decontamination. Journal of Theoretical and Applied Physics, 12, 45–51.
Ameen, Fuad, Alshehri, W. A., & Nadhari, Saleh Al. 2020. Effect of Electroactive Biofilm Formation on Acetic Acid Production in Anaerobic Sludge Driven Microbial Electrosynthesis. ACS Sustainable Chemistry & Engineering, 8, 311–318.

Bekeschus, S., Schmidt, A., Weltmann, K. D., & von Woedtke, T. 2016. The plasma jet kINPen – A powerful tool for wound healing. Clinical Plasma Medicine, 4, 19– 28.

Belgacem, Z. Ben, Carre, G., Charpentier, E., Le-Bras, F., Maho, T., Robert, E., … Gelle, M. P. 2017. Innovative non-termal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. PLoS ONE, 12, 1–18.

Brun, P., Bernabè, G., Marchiori, C., Scarpa, M., Zuin, M., Cavazzana, R., … Martines, E. 2018. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. Journal of Applied Microbiology, 125, 398–408.

Badan Standarisasi Nasional. 2011. Standar Nasional Indonesia (SNI) 01-3141-2011 tentang Syarat Mutu Susu Segar. Dewan Standarisasi Nasional. Jakarta, 52.

Carré, G., Charpentier, E., Audonnet, S., Terryn, C., Boudifa, M., Doliwa, C., …Gelle, M. P. 2018. Contribution of fluorescence techniques in determining the efficiency of the non-termal plasma treatment. Frontiers in Microbiology, 9, 1–12.

Chang, J. W., Kang, S. U., Shin, Y. S., Kim, K. Il, Seo, S. J., Yang, S. S., … Kim, C. H. 2014. Non-termal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G1 arrest via the ATM/p53 pathway. Archives of Biochemistry and Biophysics, 545, 133– 140.

De Vliegher, S., Fox, L. K., Piepers, S., McDougall, S., & Barkema, H. W. 2012. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. Journal of Dairy Science, 95, 1025–1040.

Derakhshani, H., Fehr, K. B., Sepehri, S., Francoz, D., De Buck, J., Barkema, H. W., … Khafipour, E. 2018. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. Journal of Dairy Science, 101, 10605–10625.

Detha, A. I. R. 2014. Pengujian Residu Antibiotik Pada Susu. Jurnal Kajian Veteriner, 2(2), 203-208. Edelblute, C. M., Malik, M. A., & Heller, L. C. 2016. Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces. Bioelectrochemistry, 112, 106– 111.

Fallon, M., Boyle, M., Kennedy, S., Daniels, S., & Humphreys, H. 2020. Cold atmospheric plasma, the removal of blood from steel and its effect on staphylococcal biofilm formation. A pilot study. Clinical Plasma Medicine, 19–20, 100104.

Fathollah, S., Mirpour, S., Mansouri, P., Dehpour, A. R., Ghoranneviss, M., Rahimi, N., … Chalangari, K. M. 2016. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Scientific Reports, 6. https://doi.org/10.1038/srep19144

Gök, V., Aktop, S., Özkan, M., & Tomar, O. 2019. The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma—A dry-cured beef product. Innovative Food Science and Emerging Technologies, 56, 102188.

Hong, Q., Dong, X., Chen, M., Sun, H., Hong, L., Wang, Y., … Yu, Q. 2019. An in vitro and in vivo study of plasma treatment effects on oral biofilms. Journal of Oral Microbiology, 11. https://doi.org/10.1080/20002297.2019.16 03524

Joshi, S. G., Paff, M., Friedman, G., Fridman, G., Fridman, A., & Brooks, A. D. 2010. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nontermal dielectric-barrier discharge plasma. American Journal of Infection Control, 38, 293–301.

Kayitsinga, J., Schewe, R. L., Contreras, G. A., & Erskine, R. J. 2017. Antimicrobial treatment of clinical mastitis in the eastern United States: The influence of dairy farmers’ mastitis management and treatment behavior and attitudes. Journal of Dairy Science, 100, 1388–1407.

Kirsanova, E., Heringstad, B., LewandowskaSabat, A., & Olsaker, I. 2019. Alternative subclinical mastitis traits for genetic evaluation in dairy cattle. Journal of Dairy Science, 102, 5323–5329.

Kniha, K., Möhlhenrich, S. C., Bock, A., Ayoub, N., Modabber, A., Hölzle, F., … Goloborodko, E. 2020. Evaluation of the bactericidal effect of cold atmospheric pressure plasma on contaminated human bone: an in vitro study. British Journal of Oral and Maxillofacial Surgery, 58, 329– 333.

Laurita, R., Miserocchi, A., Ghetti, M., Gherardi, M., Stancampiano, A., Purpura, V., … Colombo, V. 2017. Cold Atmospheric Plasma Treatment of Infected Skin Tissue: Evaluation of Sterility, Viability, and Integrity. IEEE Transactions on Radiation and Plasma Medical Sciences, 1, 275–279.

Lopes, B. B., Beatriz, M., Leite, D. P., Rehder, J., Batista, R. X., & Puzzi, M. B. 2013. The interactions between non-termal atmospheric pressure plasma and ex-vivo dermal fibroblasts. Procedia Engineering, 59, 92–100.

Lotfy, K., Khalil, S. M., & El-Raheem, H. A. 2020. Inactivation by helium cold atmospheric pressure plasma for Escherichia coli and Staphylococcus aureus. Journal of Theoretical and Applied Physics, 14, 37–45.

Lunov, O., Zablotskii, V., Churpita, O., Jäger, A., Polívka, L., Syková, E., … Kubinová, Š. 2016. The interplay between biological and physical scenarios of bacterial death induced by non-termal plasma. Biomaterials, 82, 71–83.

Mirani, Z. A., Aziz, M., Khan, M. N., Lal, I., Hassan, N. ul, & Khan, S. I. 2013. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microbial Pathogenesis, 61–62, 66–72.

Mohd Nasir, N., Lee, B. K., Yap, S. S., Thong, K. L., & Yap, S. L. 2016. Cold plasma inactivation of chronic wound bacteria. Archives of Biochemistry and Biophysics, 605, 76–85.

Olatunde, O. O., Benjakul, S., & Vongkamjan, K. 2019. High voltage cold atmospheric plasma: Antibacterial properties and its effect on quality of Asian sea bass slices. Innovative Food Science and Emerging Technologies, 52, 305–312.

Pandit, S., VRSS, M., Helgadottir, S. H., Westerlund, F., & Mijakovic, I. 2017. Combination of Cold Atmospheric Plasma and Vitamin C Effectively Disrupts Bacterial Biofilms. Clinical Microbiology: Open Access, 06. https://doi.org/10.4172/2327- 5073.1000283

Ramdhani, A., Ramdhani, M. A., & Amin, A. S. 2014. Wriing a Literature Review Research Paper: A step-by-step Approach. The Journal of Applied Behavioral Science, 03, 47–56.

Ren, Q., Liao, G., Wu, Z., Lv, J., & Chen, W. 2020. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. Journal of Dairy Science, 103, 3368–3380.

Sakudo, A., Yagyu, Y., & Onodera, T. 2019. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20205216

Sarron, V., Ries, D., Vandamme, M., Robert, E., Sobilo, J., Gosset, D., … Pape, A. Le. 2012. non-termal plasma. 2194, 2185– 2194.

Srivastava, A. K., & Kumaresan, A. 2015. Mastitis In Dairy Animal: Current Concepts And Future Concerns. Mastitis in dairy animals: An Update, 25-39.

Thana, P., Wijaikhum, A., Poramapijitwat, P., Kuensaen, C., Meerak, J., Ngamjarurojana, A., … Boonyawan, D. 2019. A compact pulse-modulation cold air plasma jet for the inactivation of chronic wound bacteria: development and characterization. Heliyon, 5, e02455.

Tian, Y., Sun, P., Wu, H., Bai, N., Wang, R., Zhu, W., … Liu, F. 2010. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet. Journal of Biomedical Research, 24, 264– 269.

Toba, F. A., Akashi, H., Arrecubieta, C., & Lowy, F. D. 2011. Role of biofilm in Staphylococcus aureus and Staphylococcus epidermidis ventricular assist device driveline infections. The Journal of Thoracic and Cardiovascular Surgery, 141, 1259–1264.

Yadav, D. K., Adhikari, M., Surendra, K., Ghimire, B., Han, I., Kim, M., & Choi, E. 2020. Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells : an in vitro and in silico study. Scientific Reports, 1–15.

Zhang, R., Han, Q., Xia, Y., & Li, S. 2017. Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber. Plasma Science and Technology, 19. https://doi.org/10.1088/2058-6272/aa7c16
Zhou, R., Zhang, X., Bi, Z., Zong, Z., Niu, J., Song, Y., … Yang, S. 2015. Inactivation of Escherichia coli cells in aqueous solution by atmospheric-pressure N2, He, air, and O2 microplasmas. Applied and Environmental Microbiology, 81, 5257– 5265.

Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J., & Bourke, P. 2015. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE, 10, 1–21.

Article Details